Pubblicazioni recenti sui diversi approcci di retina artificiale

Impianti epi-retinici

ARGUS

  • P. Avni, A.P. Finn, D.S. Grewal, and L. Vajzovic. Argus II reti-nal prosthesis system: a review of patient selection criteria, surgical considerations, and post-operative outcomes. Clinical Ophthalmology,12:1089–1097, 2018
  • Y.H. Luo and L. da Cruz. The Argus II retinal prosthesis system. Prog.Retin. Eye. Res., 50:89–107, 2016

IMI-IRIS

  • M. Keser ̈u, M. Feucht, N. Bornfeld, et al. Acute electrical stimulation ofthe human retina with an epiretinal electrode array, Acta Ophthalmol., 90:e1–e8, 2012.

EPI-RET3

  • G. Roessler et al. Implantation and Explantation of a Wireless Epiretinal Retina Implant Device: Observations during the EPIRET3 Prospec-tive Clinical Trial. Invest. Ophthalmol. Vis. Sci., 50(6):3003–3008, 2009.
  • J. Menzel-Severing et al. Implantation and explantation of an active epiretinal visual prosthesis:2-year follow-up data from the EPIRET3 prospective clinical trial. Invest. Ophthalmol. Vis. Sci., 26:501–509,2012

Impianti sottoretinici

BRIP

  • J.F. Rizzo et al. Methods and Perceptual Thresholds for Short-Term Electrical Stimulation of Human Retina with Microelectrode Arrays. Invest. Ophthalmol. Vis. Sci., 4(12):5355–5361, 2003.
  • J.F. Rizzo. Update on Retinal Prosthetic Research: The Boston RetinalImplant Project Journal of Neuro-Ophthalmology, 31:160–168, 2011

Artificial silicon retina

  • A.Y. Chow, A.K. Bittner, and M.T. Pardu. The artificial silicon retina in retinitis pigmentosa patients. Trans. Am. Ophthalmol. Soc., 108:120–154, 2010.
  • A.Y. Chow, V.Y. Chow, K.H. Packo, J.S. Pollack, G.A. Peyman, and R. Schuchard. The Artificial Silicon Retina Microchip for the Treatment of Vision Loss From Retinitis Pigmentosa. Arch. Ophthalmol., 122:460–469, 2004.

PRIMA

  • J.D. Loudin et al. Optoelectronic retinal prosthesis: system design and performance. J. of Neural Eng., 4:S72–S84, 2007.
  • K. Mathieson et al. Photovoltaic Retinal Prosthesis with High Pixel Density. Nat. Photonics, 6(6):391–397, 2012

AlphaIMS

  • E. Zrenner. Will Retinal Implants Restore Vision? Science,295:1022–1025, 2002.
  • K. Stingl et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. R.Soc. B, 280:20130077, 2018.
  • K. Stingl et al. Subretinal Visual Implant Alpha IMS – Clinical trial interim report. Vision Research, 111:149–160, 2015.
  • K. Stingl and E. Zrenner. Electronic Approaches to Restitute Visionin Patients with Neurodegenerative Diseases of the Retina. OphthalmicRes., 50:215–220, 2013.

Impianti sopracoroidali

STS

  • T. Fujikado et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci., 52(7):4726–4733, 2011.
  • T. Fujikado et al. Outcome of 49-Channel Suprachoroidal-Transretinal Stimulation Prosthesis in Patients With Advanced Retinitis Pigmentosa. Invest. Ophthalmol. Vis. Sci., 57(14):6147–6157, 2016.

Bionic Vision Australia

  • L.N. Ayton et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS ONE, 9(12):e115239, 2014.

Protesi organiche

  • D. Ghezzi et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nature Photonics, 7:400–406, 2013.
  • J.F. Maya-Vetencourt et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nature Materials, 16:681–689, 2017.

Nanoparticelle

J.F. Maya-Vetencourt et al. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy, Nature Nanotechnology 15:698–708, 2020.